A New Antifeedant Withanolide from *Jaborosa lanigera*

M. Cristina Tettamanzi, Fernando N. Biurrun, and Adriana M. Cirigliano

a Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina

b Herbario Regional del INDELLAR, Sede Chamical, Universidad Nacional de La Rioja, La Rioja, Argentina

Reprint requests to Dr. Adriana M. Cirigliano. Tel/Fax: (-11) 4576-3346. E-mail: adrianac@qo.fcen.uba.ar

Z. Naturforsch. 2007, 62b, 573 – 576; received December 16, 2005

A new trechonolide-type withanolide, jaborosalactol, possessing a hemiketal ring system and a 5-membered lactol, has been isolated from the aerial parts of *Jaborosa lanigera*. The structure was elucidated based on spectroscopic and spectrometric methods (1D and 2D NMR, MS). The feeding deterrent activity of the compound against the Mediterranean fruit fly *Ceratitis capitata* was examined.

Key words: *Jaborosa*, Withanolides, Jaborosalactol

Introduction

The withanolides are a group of natural C$_{28}$-steroidal lactones built on an intact or arranged ergostane framework that occurs mainly in plants of certain genera of *Solanaceae*. The first member of this group of compounds, withaferin A, was isolated from the well-known Indian medicinal plant, *Withania somnifera* [1] and its structure was fully elucidated by Lavie and coworkers in 1965 [2]. The withanolides exhibit a variety of biological activities as antifeedant, immunosuppressive and cancer chemoprevention activity [3].

Jaborosa Miers is a South American genus belonging to the *Solanaceae* family that comprises about 23 species, 11 of which are almost exclusively distributed in Argentina [4]. Previous studies on populations of *J. laciniata*, *J. magellanica*, *J. leucothrica* and *J. sativa* gave a group of withanolides with a γ-lactone ring in the side chain known as trechonolide-type. The first unsaturated-γ-lactone side-chain withanolide known as trechonolide A (1) [5] was isolated from *J. laciniata*, and its 24,25-epoxy analogue, jaborosolactone U (2) [6] was found in *J. sativa*. The epoxy-γ-lactol-side-chain found in the trechonolide isolated from *J. lanigera* (3) has no precedent among the withanolides (Fig. 1).

Results and Discussion

Jaborosalactol (3) was isolated as a major component from the aerial part of *J. lanigera*. The HREIMS showed a molecular ion corresponding to the formula C$_{28}$H$_{38}$O$_7$, whereas the EIMS showed peaks at m/z = 297 (60%) corresponding to the cleavage between C-20 and C-17, distinctive for this type of structure.

Fig. 1. Structures of compounds 1 – 3.
The assignment was done on the basis of 1H COSY-45 and 13C-1H HETCOR experiments. In the low field end of the 1H NMR spectrum, the compound exhibited signals at $\delta = 5.90, 6.74$ and 5.59, which were assigned to H-2, H-3 and H-6, respectively, of a 1-oxo-2,5-dienewithanolide [7]. The 1H and 13C NMR data for 3 closely resembled those of jaborosalone U (2), isolated from J. sativa [6] for rings C and D, and the side chain. However, the absence of a non-conjugated lactone carbonyl and the presence of two quaternary carbons at $\delta = 68.2$ and 65.2, and a methine at $\delta = 98.37$ in the 13C NMR spectrum (Table 1) assigned to C-27 and C-28 methyl hydrogens at 1.53 and 1.55 ppm and the presence of a signal at 5.11 ppm assigned to H-26 were in agreement with the proposed structure.

The stereochemistry at positions C-24, C-25 and C-26 of jaborosolactol (3) was assigned based on spectroscopic and molecular modeling considerations. Two orientations are possible for the epoxide, either 24R, 25R or 24S, 25S, which, combined with the two possible configurations at C-23 (23R or 23S) led to four possible stereochemical arrangements for the lactol side-chain. Further, three rotamers around the C-22-C-23 bond are possible in each case. In addition, we have to consider the stereochemistry of C-26 (26R or 26S). Thus, the twenty-four structures were generated and their geometry optimized by molecular modeling using the AM1 semiempirical method.

ROESY experiments carried out on jaborosolactol (3) showed that at short mixing times (0.7 sec) extremely weak or no ROE cross-peaks were observed between protons more than 3.0 A apart. Under these conditions, strong peaks were observed for the pairs H-26/H-27, H-23/H-22, H-23/H-21, H-23/H-28, H-22/H-21, and H-22/H-28. An extremely weak ROE cross-peak was barely detected for the pair H-20/H-23 and for H-26/H-23. The small coupling constant observed between H-22/H-23 allowed us to discard those structures where H-22 and H-23 have an anti arrangement. The carbon chemical shift of C-23 indicates a 23S configuration at this position [8]. We considered only conformers corresponding to the non anti configurations and discarded those having H-23/H-21 and H-22/H-28 distances larger than 3.1 Å for which almost no ROEs should be observed. Thus, we only had to consider two possible structures, 23S,24R,26S and 23S,24R,26S. Table 2 summarizes the relative energy of the two remaining structures and relevant geometrical data. Considering the interproton distances in Table 2, only the conformer 23S,24R,26S (indicated as b) is compatible with the observed NOEs (Figs. 1, 2). These results imply the same absolute configuration at position 23 as in trechonolide A (1) [5, 8] and the opposite orientation of the 24,25-epoxide as in jaborosalone U (2). Based on our results, we also conclude that the stereochemistry of C-26 in 3 is S.

Feeding deterrent activity of jaborosolactol (3) was studied against the Mediterranean fruit fly Ceratitis capitata W. (Diptera: Tephritidae). The bioassays were performed incorporating the products into Terán larval diet [9] in concentrations of 500 ppm. Daily obser-

Table 1. 1H and 13C NMR spectral data of compound 3 in CDCl3a.

<table>
<thead>
<tr>
<th></th>
<th>1H (δ)</th>
<th>13C (δ)</th>
<th>1H (δ)</th>
<th>13C (δ)</th>
<th>1H (δ)</th>
<th>13C (δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.52</td>
<td>39.5</td>
<td>1.22</td>
<td>21.6</td>
<td>1.84</td>
<td>31.5</td>
</tr>
<tr>
<td>2</td>
<td>5.90</td>
<td>127.5</td>
<td>21.02</td>
<td>8.0</td>
<td>2.10</td>
<td>73.0</td>
</tr>
<tr>
<td>3</td>
<td>6.74</td>
<td>145.1</td>
<td>42.0</td>
<td>5.7</td>
<td>4.20</td>
<td>73.0</td>
</tr>
<tr>
<td>4</td>
<td>2.86</td>
<td>33.3</td>
<td>42.0</td>
<td>5.7</td>
<td>4.20</td>
<td>73.0</td>
</tr>
<tr>
<td>5</td>
<td>1.52</td>
<td>39.5</td>
<td>1.22</td>
<td>21.6</td>
<td>1.84</td>
<td>31.5</td>
</tr>
<tr>
<td>6</td>
<td>5.59</td>
<td>124.1</td>
<td>25.0</td>
<td>6.2</td>
<td>5.12</td>
<td>98.4</td>
</tr>
<tr>
<td>7</td>
<td>1.51</td>
<td>25.2</td>
<td>80.2</td>
<td>1.51</td>
<td>25.2</td>
<td>80.2</td>
</tr>
<tr>
<td>8</td>
<td>1.55</td>
<td>32.3</td>
<td>12.2</td>
<td>1.55</td>
<td>32.3</td>
<td>12.2</td>
</tr>
<tr>
<td>9</td>
<td>1.90</td>
<td>40.6</td>
<td>18.9</td>
<td>1.90</td>
<td>40.6</td>
<td>18.9</td>
</tr>
<tr>
<td>10</td>
<td>49.6</td>
<td>1.55</td>
<td>13.8</td>
<td>49.6</td>
<td>1.55</td>
<td>13.8</td>
</tr>
</tbody>
</table>

a Chemical shifts (δ) downfield from TMS, 500.13 and 125.77 MHz; 13C NMR signals were assigned according to the H-C correlations obtained from HETCOR.
vations were made in order to the number of puparia and adults. The DT 50 % (time needed to reach the adult stage of 50 % of the surviving individuals) was evaluated. The DT 50 % obtained were 20.10 (19.82 – 20.43) for jaborosolactol and 18.99 (18.71 – 19.26) for the control. The results have shown that jaborosolactol produced a significant delay in development of neonate larvae.

Experimental Section

General experimental procedures

1H and 13C NMR spectra were recorded on a Bruker AC-200 NMR spectrometer at 200.13 and 50.32 MHz, respectively, and on a Bruker AM-500 at 500.13 and 125.77 MHz, respectively. Multiplicity determinations (DEPT-135) and 2D spectra (COSY-45, HETCOR and ROESY) were obtained using standard Bruker software. Chemical shifts are given in δ downfield from TMS as internal standard. EIMS were collected on a VG Trio-2 mass spectrometer at 70 eV by direct inlet; HREIMS (70 eV) were measured on a VG ZAB-BEQQ mass spectrometer. IR and UV spectra were measured on a Nicolet Magna 550 FT IR and a Hewlett-Packard 8451A spectrophotometer, respectively. AM1 calculations were performed with the MOPAC module in Chem3D 8.0 (Cambridge Soft). The melting point was taken on a Fisher-Johns apparatus and UV/vis (MeOH): λ$_{max}$ (log ε) = 215 nm (3.19) – IR (dry film): ν = 3429, 2959, 2938, 1719, 1662, 1265, 1027 cm$^{-1}$. – 1H NMR (500.13 MHz, CDCl$_3$, assignments based on 1H-1H-COSY): δ = 1.02 (d, J = 6.6 Hz, 1H, 21-H), 1.07 (s, 3H, 18-H), 1.22 (s, 3H, 19-H), 1.51 (m, 1H, 7β-H), 1.52 (s, 3H, 27-H), 1.55 (m, 1H, 8-H), 1.55 (s, 3H, 28-H), 1.86 (m, 1H, 11β-H), 1.90 (m, 1H, 9-H), 2.07 (m, 1H, 7β-H), 2.10 (m, 1H, H-20), 2.28 (m, 1H, 11α-H), 2.86 (dd, J = 21.2, 4.7 Hz, 1H, 4α-H), 3.26 (dd, J = 21.2, 2.6, 1.8 Hz, 1H, 4β-H), 4.20 (dd, J = 12.4, 1.0 Hz, 1H, 22-H), 4.29 (d, J = 1.0 Hz, 1H, 23-H), 4.40 (d, J = 12.4 Hz, 1H, 26-OH), 5.11 (d, J = 12.4 Hz, 1H, 26-H), 5.59 (d, J = 5.8 Hz, 1H, 6-H), 5.90 (dd, J = 10.2, 1.8 Hz, 1H, 2-H), 6.74 (ddd, J = 10.2, 4.7, 2.6 Hz, 1H, 3-H). – 13C NMR (125.77 MHz) see Table 1. – MS (EI, 70 eV): m/z (%) = 486 [M$^{+}$] (1), 468 [M$^{+}$ - 18] (6), 450 (1), 298 (21), 297 (60), 283 (18), 280 (3), 265 (11), 168 (4), 107 (38), 97 (47), 55 (100). – HREIMS: m/z = 486.2620 [M$^{+}$] (C$_{28}$H$_{36}$O$_6$), requires 486.2618.

Acknowledgements

We thank Dr Silvina Bado, Facultad de Agronomía, Universidad de Buenos Aires for investigation of the deterrent activity. Financial support by CONICET (Argentina) and Universidad de Buenos Aires is gratefully acknowledged.