Studies on the Thermolysis of Ether-Stabilized Lu(CH₂SiMe₃)₃, Molecular Structure of Lu(CH₂SiMe₃)₃(THF)(diglyme)

Konstantin A. Rufanova, Dominique M. M. Freckmann, Heinz-Jürgen Kroth, Stefan Schutte, and Herbert Schumann

a Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin, Germany
b Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany

Reprint requests to H. Schumann. E-mail: schumann@chem.tu-berlin.de

Z. Naturforsch. 60b, 533 – 537 (2005); received December 27, 2004

Lu(CH₂SiMe₃)₃(THF)₂ (2) decomposes slowly at room temperature with formation of Me₄Si. In order to understand the mechanism of this elimination process, Lu(CH₂SiMe₃)₃([D₈]-THF)₂ (1), Lu(CH₂SiMe₃)₃(THF)(DME) (3), and Lu(CH₂SiMe₃)₃(THF)(diglyme) (4) were prepared. The results of ¹H NMR spectroscopic studies of the decomposition in solution exclude an α- as well as a β-H elimination mechanism and point towards a γ-H elimination. The molecular structure of 4 has been determined by single crystal X-ray diffraction.

Key words: Lutetium Alkyls, Decomposition, X-Ray Structure, γ-H Elimination

Introduction

Until recently chemical bonding in coordination and organometallic compounds of the lanthanides has been considered as purely ionic with the metal d orbitals not involved in covalent σ- or π-bonds [1]. However, some experimental observations cannot be understood on this simple basis. Very recently the first examples of imido complexes of the lanthanides have been described [2 – 4], in which the 5d metal acceptor orbitals appear to play a significant role in stabilizing π-donation from imido groups to a lanthanide (Sm) center [5].

Related lanthanide alkylidene complexes are less well known. In examples containing either neutral simple imidazol-2-ylidene [5 – 7] or bis(imidophenyl-phosphorano)methylidene ligands [7], the carbenoid carbon atoms are stabilized by directly bound heteroatoms, and the Ln-C bonds cannot be considered to have true metallaalkene character.

In 1978 we synthesized THF adducts of homoleptic alkyl complexes Ln(CH₂SiMe₃)₃ of the late lanthanides Er, Tm, and Lu (Scheme 1) [8 – 10] and studied their thermal decomposition. We found that these complexes are rather unstable and decompose evolving Me₄Si to leave THF-free polymeric materials. These products are insoluble in organic solvents, but upon quenching with D₂O gave rise to singly as well as doubly deuterated Me₄Si. This fact was interpreted by assuming formation of lanthanide alkylidene complexes resulting from α-H-elimination of one of the Me₃SiCH₂ groups (Scheme 1) [9]. However, this mechanism was not sufficiently proven and the nature of the decomposition products was not studied any further.

In order to support the proposed formation of Ln=C species, we decided to reinvestigate the thermal decomposition of Lu(CH₂SiMe₃)₃(THF)₂ with the aim to delineate the elimination pathway in this particular case. In addition, we synthesized other ether adducts of Lu(CH₂SiMe₃)₃ and studied their chemical and thermal stability.

Results and Discussion

Three elimination pathways can be proposed for the thermal decomposition of Lu(CH₂SiMe₃)₃(THF)₂

LuCl₃ + 3LiCH₂SiMe₃ \xrightarrow{\text{THF}} \text{Et₂O/pentane} \rightarrow \text{Lu(CH₂SiMe₃)₃(THF)₂}

Lu(CH₂SiMe₃)₃(THF)₂ \xrightarrow{\text{pentane/hexane}} \text{slow at RT} \rightarrow \text{fast at T>50 °C}

\{Me₃SiCH₂Lu=CHSiMe₃\} + SiMe₄

Scheme 1.
Studies on the Thermolysis of Ether-Stabilized Lu(CH₂SiMe₃)₃

forming SiMe₄: i) via α-H elimination from a Lu-SiCH₂ group (I), ii) via β-H elimination from a THF ligand (II), and iii) via γ-H elimination releasing a hydrogen from a SiCH₃ group (III) (Scheme 2).

It is well known that the CH-acidity of O-CH₂-protons in coordinated THF is higher than in free THF, therefore decomposition of Lu(CH₂SiMe₃)₃(THF)₂ can in principle proceed via activation of such a proton. In order to study this possibility we synthesized Lu(CH₂SiMe₃)₃([D₈]-THF)₂ (1) and thermolyzed it in hexane at elevated temperatures (Scheme 3). No formation of Me₃SiCH₂D was observed by NMR and GC-MS analysis of the products in solution. Based on these results a β-H-elimination mechanism can be ruled out.

Decomposition of Lu(CH₂SiMe₃)₀(THF)₂ (2) either via α-H- or γ-H-elimination should yield Me₃Si and organolutetium compounds. After D₂O⁺ quenching these residues are expected to form Me₃SiCH₂D and Me₃SiCHD₂ as deuteriolysis products of Me₃SiCH₂Lu=CHSiMe₃ in the case of α-H elimination, and Me₁SiCH₂D and Me₂Si(CHD)₂ in the case of β-H elimination of Me₃SiCH₂Lu(μ-CH₂)₂SiMe₂ in the case of γ-H elimination. Heating of 2 in hexane to 60 °C for 4 days gave an extremely air-sensitive yellowish product which turns white immediately when exposed to air. Hydrolysis of this product with D₂PO₄ in [D₆]-benzene did not result in the formation of any Me₃SiCHD₂. In the ¹³C{¹H} NMR spectrum the 1:1:1:1:1 quintet of Me₃SiCHD₂ was not observed but two 1:1:1 triplets appeared with ¹JC-D coupling constants of 18 Hz which can be assigned to the deuteriolysis product Me₂Si(CHD)₂, proving the fact that γ-H elimination of Me₄Si is the predominant decomposition pathway of 2.

X-ray structural investigations of Lu(CH₂SiMe₃)₃(THF)₂ (2) proved the molecule to have a trigonal bipyramidal structure with the Me₃SiCH₂ ligands in equatorial and the THF ligands in apical positions. The angle O-Lu-O of 177.73° indicates only a minor deviation from the ideal linear arrangement. On the other hand, the three Me₃SiCH₂ ligands are distributed unsymmetrically with C-Lu-C angles of 110.00, 116.16, and 133.74°. Two Me₃Si groups face each other, impeding any α-elimination of Me₄Si (Fig. 1) [11].

In order to facilitate α-H elimination as a decomposition pathway we decided to preorganize the cis-configuration of the alkyl groups in the coordination sphere of the Lu center by synthesizing other ether adducts of Lu(CH₂SiMe₃)₃ using chelating ligands like DME and diglyme. However, alkylation of LuCl₃ with LiCH₂SiMe₃ in DME/pentane under reaction conditions used for the synthesis of 2 did not yield DME-solvated Lu(CH₂SiMe₃)₃, but gave only viscous insoluble materials. Probably "ate"-complexes analogous to [Li(TMEDA)₂][Lu(CH₂SiMe₃)₄] are formed in these reactions as in the presence of TMEDA [9, 10].

Substitution of THF ligands in 2 by DME resulted in an increase of the coordination number of Lu to six and formation of the lutetium complex 3 bearing one THF and one chelating DME ligand (Scheme 4),...
as demonstrated by the 1H and 13C NMR spectra of the product 3. Unfortunately its crystal structure could not be refined satisfactorily because of disorder of the coordinated THF and DME molecules [12]. It appears that in contrast to the direct synthesis of Lu(CH$_2$SiMe$_3$)$_3$(12-crown-4) from 2 and 12-crown-4, recently described [13], substitution of only one THF by DME has occurred. A further displacement of coordinated THF by DME could not be accomplished.

The reaction of 2 with diglyme proceeds similarly (Scheme 4), yielding the octahedrally coordinated mixed THF/diglyme lutetium complex 4. The product crystallizes from pentane at -10°C as colourless needles. The diglyme ligand is coordinated to lutetium only via two oxygen atoms leaving a dangling CH$_2$CH$_2$OMe arm (Fig. 2).

The molecular structure of 4 shows the lutetium atom in a distorted fac-octahedral coordination very similar to that found in Sm(CH$_2$SiMe$_3$)$_3$(THF)$_3$ [11]. Most angles at the lutetium atom deviate strongly from linearity or from 90°. The smallest angle O(2)-Lu-O(3) (66.75°) is a result of the geometry of the diglyme molecule. The sterical demand of the Me$_3$Si groups bonded to C(5) and C(9) causes a widening of the angles C(5)-Lu-C(9) (103.1°) and C(5)-Lu-O(2) (101.45°), but nevertheless an almost planar coordination of C(5), C(9), O(3) and O(2) around the lutetium atom results, including a small C(9)-Lu-O(3) angle of 86.70°. Owing to the small difference in the atomic radii of samarium and lutetium [15], the Ln-C bond lengths are generally the same in 4 and Sm(CH$_2$SiMe$_3$)$_3$(THF)$_3$ [11]. They are also equal in the distorted trigonal bipyramidal complex 2 and in the fac-octahedral molecule 4.

In contrast to 2, the two mixed adducts 3 and 4 are thermally robust complexes. 4 shows only little decomposition after heating for 2 days in heptane to 70–90°C. This observation undoubtedly confirms that α-H elimination is clearly not a favourable process in the thermal decomposition of Lu(CH$_2$SiMe$_3$)$_3$ ether adducts. The remaining γ-H elimination pathway, yielding Me$_4$Si and Me$_3$SiCH$_2$Lu(µ-CH$_2$)$_2$SiMe$_2$, has to be confirmed or excluded by further investigations.

Experimental Section

All experiments were performed in an atmosphere of dry, oxygen-free nitrogen using Schlenk techniques and solvents dried over sodium/benzophenone and distilled prior to use. LuCl$_3$ [16] and LiCH$_2$SiMe$_3$ [17] as well as Lu(CH$_2$SiMe$_3$)$_3$([D$_8$]-THF)$_2$ (1) and Lu(CH$_2$SiMe$_3$)$_3$(THF)$_2$ (2) [8] were synthesized according to literature methods. NMR spectra were recorded using Bruker ARX 200 and 400 spectrometers. Lu was determined complexometrically against xyleneorange after digestion in 60% HClO$_4$ at pH 6 to 7 [18].

Lu(CH$_2$SiMe$_3$)$_3$([D$_8$]-THF)$_2$ (1) [8]

1H NMR ([D$_8$]-benzene, 200 MHz): δ = 0.18 (s, 27 H, CH$_3$Si), –1.02 (s, 6 H, CH$_2$). –13C{[1H]} NMR ([D$_8$]-benzene, 50 MHz): δ = 4.5 (CH$_3$Si), 24.7 (CH$_2$).

Lu(CH$_2$SiMe$_3$)$_3$(THF)$_2$ (2) [8]

1H NMR ([D$_8$]-benzene, 200 MHz): δ = –0.99 (s, 6 H, LuCH$_2$), 0.19 (s, 27 H, CH$_3$Si), 1.35 (m, 8 H, THF), 3.94
(m, 8 H, THF). – 13C1H NMR ([D$_6$]-benzene, 50 MHz): δ = 47.2 (CH$_3$Si), 25.1 (LuCH$_2$), 41.7 (THF), 71.0 (THF).

$\text{Lu(CH}_2\text{SiMe}_3)_3\text{(THF)}\text{(DME)}$ (3)

To a solution of 2 (290 mg, 0.5 mmol) in pentane (10 ml) a mixture of DME (1 ml, 10 mmol) and pentane (10 ml) was added via syringe. The reaction mixture was slowly cooled from 0 °C and then to −30 °C. A white crystalline material precipitated. The reaction vessel was cooled to −78 °C and the mother solution was decanted under nitrogen. The residue was dried under vacuum yielding 300 mg (100%) of colorless crystals of 3. – 1H NMR ([D$_6$]-benzene, 400 MHz): δ = −0.68 (s, 6 H, LuCH$_2$), 0.35 (s, 27 H, SiCH$_3$), 1.33 (m, 4 H, β-CH$_2$(THF)), 2.73 (sbr, 4 H, OCH$_2$(DME)), 3.08 (sbr, 6 H, OCH$_3$(DME)), 3.63 (sbr, 4 H, α-CH$_2$(THF)), – 13C1H NMR ([D$_6$]-benzene, 100.64 MHz): δ = 49.7 (CH$_3$Si), 25.2 (LuCH$_2$), 42.3 (β-CH$_2$(THF)), 61.0 (CH$_2$(DME)), 69.5 (α-CH$_2$(THF)), 70.8 (CH$_3$(DME)), – C$_2$H$_5$LuO$_3$Si$_3$ (598.85): calcld. C 40.11, H 8.62, Lu 27.22; found C 40.32, H 8.51, Lu 27.12.

$\text{Lu(CH}_2\text{SiMe}_3)_3\text{(THF)}$ (diglyme) (4)

4 was synthesized analogously to 3 from 2 (520 mg, 0.9 mmol) and diglyme (1 ml) in hexane (50 ml). Yields 575 mg (> 99%) of colorless crystals. – 1H NMR ([D$_6$]-benzene, 400 MHz): δ = −0.70 (s, 6 H, LuCH$_2$), 0.40 (s, 27 H, SiCH$_3$), 1.43 (m, 4 H, β-CH$_2$(THF)), 2.76 (sbr, 4 H, OCH$_2$(diglyme)), 3.11 (sbr, 10 H, CH$_2$OCH$_2$(diglyme)), 3.61 (m, 4 H, α-CH$_2$(THF)), – 13C1H NMR ([D$_6$]-benzene, 100.64 MHz): δ = 4.8 (SiCH$_3$), 25.6 (LuCH$_2$), 41.0 (β-CH$_2$(THF)), 60.6 (CH$_3$(diglyme)), 68.6 (α-CH$_2$(THF)), 69.6 (CH$_2$(diglyme)). – C$_2$H$_5$LuO$_3$Si$_3$ (642.90): calcld. C 41.10, H 8.62, Lu 27.22; found C 40.51, H 8.29, Lu 27.78.

Thermal decompositions of 1

Freshly recrystallized 1 (300 mg) was put in a 25 ml Schlenk vessel, dissolved in hexane (10 ml), exposed to a slight vacuum and allowed to stand in an oil bath at 60 °C for 4 d. Already after one night a yellow precipitate was formed, leaving the solution colorless and transparent. GC-MS analysis of the hexane solution showed three hexanes, a small amount of pentane, Me$_2$Si and [D$_6$]-THF. Me$_2$SiCH$_2$D could not be detected.

Thermal decomposition of 2

Freshly recrystallized 2 (500 mg) was put in a 50 ml Schlenk vessel, dissolved in hexane (25 ml), exposed to a
K. A. Rufanov et al. · Studies on the Thermolysis of Ether-Stabilized Lu(CH$_2$SiMe$_3$)$_3$