Bis-phosphonio-isophosphindolide Copper Complexes

Dietrich Gudat^{a,*}, Andreas W. Holderberg^a, Nikolaus Korber^b, Martin Nieger^a, and Martin Schrott^a

 ^a Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn
^b Institut für Anorganische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg

* Reprint requests to Dr. D. Gudat. Fax: (+49) 228 73 53 27. E-mail: dgudat@uni-bonn.de

Z. Naturforsch. 54 b, 1244–1252 (1999); received July 6, 1999

Phosphorus Heterocycles, Copper Complexes, Crystal Structure, ³¹P NMR Data

Bis-triphenylphosphonio-isophosphindolide salts 1[X] react with Cu(I)-halides CuX to give isolable products of composition $[(1)Cu_2X_3]$. X-ray crystal structure analyses confirmed that for X = Br, Cl dinuclear complexes $[(\mu-1)(\mu-X)Cu_2X_2]$ with $\mu_2, \eta^1(P)$ -bridging cations 1 are formed, while for X = I a solid phase containing a salt $(1)_2[Cu_4I_6]$ and a complex $[(1)_2Cu_4I_6]$ with a terminal $\eta^1(P)$ -coordinated ligand 1 was obtained. The bonding parameters in the two types of complexes suggest that 1 is a hybrid between a phosphenium cation and a phospholide anion whose π -system is less nucleophilic than the phosphorus lone-pair. ³¹P NMR studies revealed that in solution in all cases binuclear complexes $[(1)Cu_2X_3]$ are in dynamic equilibrium with small amounts of mononuclear species and free 1. The same equilibria were detected in the system 1[OTf]/CuOTf. NMR studies of ligand exchange reactions indicated that the stability of complexes $[(1)Cu_2X_3]$ increases in the order X = OTf < I < Br, Cl, and titration of $[(1)Cu_2Br_3]$ with Et₄NBr allowed to determine the equilibrium constant of the complex formation reaction.