Synthesis and Reactivity of Novel Bis(stannyl)silanes

P. Bleckmann^b, U. Englich^c, U. Hermann^a, I. Prass^a, K. Ruhlandt-Senge^c,

M. Schürmann^a, C. Schwittek^b, and F. Uhlig^{a,*}

^a Fachbereich Chemie der Universität Dortmund, Anorganische Chemie II,

Otto-Hahn-Straße 6, D-44221 Dortmund, Germany

b Fachbereich Chemie der Universität Dortmund, Organische Strukturchemie,
Otto-Hahn-Straße 6, D-44221 Dortmund, Germany

^c Syracuse University, Department of Chemistry, 1-014 Center of Science and Technology, Syracuse, N.Y., USA

* Reprint requests to Dr. F. Uhlig. Fax: (+49) 231 755 3797. E-mail: fuhl@platon.chemie.uni-dortmund.de

Dedicated to Prof. Dr. H. Oehme on the occasion of his 60th birthday

Z. Naturforsch. **54 b**, 1188–1196 (1999); received June 30, 1999

Stannylsilanes, Rearrangement, Reactions with Alkynes, X-Ray Data

Bis(stannyl)silanes of types $R_3Sn-SiR'_2-SnR_3$ and $R_2(H)Sn-SiR'_2-Sn(H)R_2$ with R' being methyl, phenyl, *iso*-propyl or *tert*-butyl have been synthesized by treatment of difunctionalized diorganosilanes with alkali stannides (R = Me, tBu ; R' = Me, tPr ; 1 - 6, 8) or with triphenyl-

tin chloride and magnesium (R = Ph; R' = Me, Ph, Pr; 7, 9). Me₃Sn-Si²Bu₂-SnMe₃ 4, was halogenated using SnCl₄, to yield the bis(chlorostannyl)silane 11.

The reaction of bis(stannyl)diorganosilanes R₃SnSiR'₂SnR₃ with catalytic amounts of

The reaction of bis(stannyl)diorganosilanes R₃SnSiR'₂SnR₃ with catalytic amounts of Pd(PPh₃)₄ resulted in unexpected rearrangements under formation of the silyldistannanes R₃SnSnR₂SiR'R₂. These compounds undergo addition reactions with alkynes. All compounds have been identified by NMR, IR, MS and elemental analysis. Compounds **5**, **6** and **7** have also been characterized by X-ray crystallography.