Condensed [Ru_4Sn_6] Units in the Stannides $LnRu_4Sn_6$ (Ln = La, Pr, Nd, Sm, Gd) – Synthesis, Structure, and Chemical Bonding

which are packed in a tetragonal body-centered arrangement. The rare-earth atoms fill the voids between the [Ru₄Sn₆] units. Based on an extended Hückel calculation, strong bonding

Markus F. Zumdick and Rainer Pöttgen*

Anorganisch-Chemisches Institut, Universität Münster, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany

Stannides, Crystal Structure, Chemical Bonding

* Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. **54 b**, 863–869 (1999); received March 29, 1999

Z. Naturiorscn. **34 b**, 803–809 (1999); received March 29, 1999

The stannides LnRu₄Sn₆ (Ln = La, Pr, Nd, Sm, Gd) were prepared by reaction of the elements in an arc-melting furnace and subsequent annealing at 1120 K. The praseodymium, the neodymium, and the samarium stannide were obtained for the first time. The LnRu₄Sn₆ stannides were investigated by X-ray diffraction both on powders and single crystals. They adopt the YRu₄Sn₆ type structure which was refined from single crystal X-ray data for the samarium and the gadolinium compound: $\bar{A}2m$, a = 686.1(1), c = 977.7(2) pm, wR2 = 0.0649, 483 F² values for SmRu₄Sn₆, and a = 685.2(1), c = 977.6(3) pm, wR2 = 0.0629, 554 F² values for GdRu₄Sn₆ with 19 variables for each refinement. The striking structural motif of these stannides are distorted RuSn₆ octahedra with Ru-Sn distances ranging from 257 to 278 pm. Four of such octahedra are condensed via common edges and faces forming [Ru₄Sn₆] units

interactions were found for the Ru-Sn and the various Sn-Sn contacts.