Metal Ion-Binding Properties in Aqueous Solution of the Nucleoside Analogue, 5,6-Dichloro-1- $(\beta$ -D-ribofuranosyl)benzimidazole (DRB)

Larisa E. Kapinos, Bin Song, Helmut Sigel*

Institute of Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland

Z. Naturforsch. 53b, 903-908 (1998); received May 15, 1998

Acidity Constants, Benzimidazole Type Ligands, Imidazole Type Ligands, Metal Ion Complexes, Steric Inhibition

The stability constants of the 1:1 complexes formed between Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mn^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} or Cd^{2+} (= M^{2+}) and 5,6-dichloro-1-(β -D-ribofuranosyl)benzimidazole (DRB) were determined by potentiometric pH titrations in aqueous solution (25 °C; I = 0.5 M, $NaNO_3$). The acidity constant of $H(DRB)^+$, the proton being at N3, was measured by the same method and the result was confirmed via spectrophotometry. Based on previously established [L. E. Kapinos, B. Song, H. Sigel, Inorg. Chim. Acta 280, in press (1998)] log K_{ML}^{ML} versus pK_{HI}^{H} straight-line plots for complexes of imidazole-type ligands it is shown for the $M(DRB)^{2+}$ and $Zn(DRB)^{2+}$ complexes, as examples, that the benzene ring of the benzimidazole residue exerts a steric inhibition for metal ion binding at N3; *i.e.*, the data points for the $M(DRB)^{2+}$ complexes fall clearly below the straight lines defined by the imidazole-type ligands.

^{*} Reprint requests to Prof. Dr. H. Sigel. E-mail: Sigel@ubaclu.unibas.ch