Defect Model of a Tetragonal Sm³⁺ Center Found from EPR Measurements in CaF₂ and SrF₂ Crystals

Wen-Chen Zheng^{a,b}, Hui-Ning Dong^{a,c}, Shao-Yi Wu^{b,d}, and Sheng Tang^a

^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China ^b International Centre for Materials Physics, Chinese Academy of Sciences,

Shenyang 110016, P. R. China

^c Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China

^d Department of Applied Physics, University of Electronic Science and Technology of China, Chendu 610054, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwenchen@netease.com

Z. Naturforsch. **58a**, 373 – 375 (2003); received February 14, 2003

The EPR parameters (**g** factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) of a tetragonal (C_{4v}) Sm³⁺ center in CaF₂ and SrF₂ crystals are calculated by considering the crystal-field J-mixing among the ground ${}^{6}\text{H}_{5/2}$, the first excited ${}^{6}\text{H}_{7/2}$ and second excited ${}^{6}\text{H}_{9/2}$ state multiplets. In the calculations the free-ion and crystal-field parameters of the tetragonal Sm³⁺-F⁻ center obtained from polarized laser-selective excitation spectroscopy are used. The calculated results suggest that the tetragonal Sm³⁺-F⁻ center is the Sm³⁺ center found by later EPR measurements. The **g** factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp} of this EPR center are satisfactorily explained.

Key words: Defect Model; Electron Paramagnetic Resonance; Crystal-field Theory; Sm^{3+} ; CaF₂; SrF₂.