Oxygen Content Dependence of ⁶³Cu(1) NOR and Proton NMR in Hydrogen-Doped Antiferromagnetic YBa₂Cu₃O_{6+r}H_v* Haruo Niki, Kikuhiro Kano, Mitsuhiro Takase, Kensei Majikina, Katsuma Yagasaki, Takeshi Shinohara^a, Mamoru Omori^a, Shoichi Tomiyoshi^b, and Etsuo Akiba^c Department of Physics, College of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan ^a Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan ^b Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan ^c National Institute of Materials and Chemical Research, Tsukuba 305-8565, Japan Z. Naturforsch. **53a**, 518–523 (1998); received March 24, 1998 The oxygen content dependence of ⁶³Cu NQR at the Cu(1) site and proton NMR have been measured in the antiferromagnetic phase of powdered samples of hydrogen-doped YBa₂Cu₃O_{6+r}H_v $(0.07 \le x \le 0.17 \text{ and } y \approx 1)$ from 4.2 to 90 K. The spectrum of ¹H NMR is a single line and the line width increases below 15 K due to magnetic interactions. The enhancements of T_1^{-1} and T_2^{-1} of ⁶³Cu(1) NQR occur around 35 and 15 K, respectively. These enhancements increase with increasing oxygen concentration. The maximum values of T_1^{-1} and T_2^{-1} for the sample with x = 0.17 reach 200 sec^{-1} and more than 7 msec⁻¹, respectively. The predominant source for the relaxation mechanism of ⁶³Cu(1) NQR and the line broadening of ¹H NMR are found to be the fluctuating magnetic field due to the staggered Cu²⁺ moments Key words: Antiferromagnetic materials, High-T_c superconductor, Spin-lattice Relaxation Time, Cu NOR, Proton NMR. Reprint requests to Prof. Haruo Niki. E-mail: niki@gen.u-ryukyu.ac.jp