Anisotropic Fluorescence of Donor-Acceptor-Substituted trans-Stilbenes in Solvents of Different Polarities and Low Viscosity *

A. Kawski, M. Alicka, and D. Gloyna **

Luminescence Research Group, Institute of Physics, University of Gdańsk, Gdańsk, Poland

Z. Naturforsch. 36a, 1259-1260 (1981); received August 28, 1981

The fluorescence anisotropy (FA) and mean lifetime $\tau_{\rm F}$ of substituted trans-stilbenes was investigated at 293 K in the nonpolar and polar low viscosity solvents n-heptane, toluene, acetonitrile, dimethylformamide and n-propanol. In most cases, the fluorescence was found to be strongly anisotropic due to a very short lifetime of the donor-acceptor-substituted trans-stilbenes.

1. Introduction

Trans-stilbene and its donor-acceptor-substituted derivatives exhibit not only photochemical trans-cis isomerization [1-3], but also particularly interesting fluorescent properties [4-7]. In paraposition, the transition moment lies along their major axis [8, 9]. The rotational relaxation time in low-viscous solvents is comparable to the mean lifetime of the first singlet excited state, which accounts for high fluorescence anisotropy (FA)*** observed for a series of substances in solvents with low viscosities [10, 11].

Here we present some further interesting results concerning the FA and mean fluorescence lifetime $\tau_{\rm F}$ for eleven stilbene 1 derivatives in low-viscous nonpolar (n-heptane and toluene) and polar (aceto-nitrile, dimethylformamide DMF and n-propanol) solvents.

- * Carried out under the research problem MR.I.5.
- ** Wissenschaftsbereich Organische Chemie, Sektion Chemie der Humboldt-Universität Berlin, GDR-104.
- *** For plane polarized exciting light,

$$J = rac{J_{\parallel} - J_{\perp}}{J_{\parallel} + 2J_{\perp}} = rac{2P}{3-P},$$

where J_{\parallel} and J_{\perp} are the components of the emitted intensity, parallel and perpendicular to the exciting light, respectively. P is the degree of polarization of light.

Reprint requests to Prof. Dr. Alfons Kawski, Instytut Fizyki, Uniwersytet Gdański, Wita Stwosza 57, 80-952 Gdańsk, Poland. Table 1. The fluorescence mean lifetimes $\tau_{\rm F}$ (in 10⁻¹² s)^a. fluorescence anisotropies r and polarization degrees P^b for trans-stilbene 1 in different sol

ents	Re Re H A-00H3 3-0M62 3-0M62 3-0CH3	R/6 R/6 Ph ₂ P(0) Ph ₂ P(0) Ph ₂ P(0) Ph ₂ P(0)	$\begin{array}{c} \text{n-He}\\ n-\text{He}\\ s\\ s\\$	ptane 0,397 10 1,92 r 0,1689 0,11726 0,11726 0,0151 0,0151	$\begin{array}{c} ^{-3} P_{a \cdot s^{d}} \\ P \\ 0.2336 \\ 0.2238 \\ 0.2224 \\ 0.0579 \end{array}$	$\begin{array}{c c} Tolue\\ \hline T \\ \hline $	ne ,552 10 ,38 ,38 ,02018 0,0112 0,0112	$\begin{array}{c} {}^{-3} P_{3.8} \\ P \\ P \\ 0,2551 \\ 0,2651 \\ 0,3608 \\ 0.3608 \\ 0.3608 \end{array}$	$\begin{array}{c c} & A \operatorname{ceto} \\ A \operatorname{ceto} \\ & \eta = 0 \\ \varepsilon = 3 \\ \varepsilon$	nitrile 3.34 10 ⁻³ 6.7 r 0.02241 0.0747 0.0015 0.0471	$\begin{array}{c} ^3 P_{a \cdot s} \\ \hline P \\ 0,3023 \\ 0,0023 \\ 0,3760 \\ 0.0691 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\$	ylformaı 802 10 ⁻³ 7 0,2627 0,026 0,0026 0,0026	mide ¹ Pa. s <i>P</i> 0,11709 0,3039 0,3073	$\begin{array}{c} \text{n-Prop}\\ 10^{-1}\text{Prop}\\ \epsilon = 13\\ \epsilon = 13\\ \epsilon = 13\\ 10^{-1}\text{Prop}\\ 10^{$	anol 2 10 ⁻³ I 7 0,3030 0,1620 0,0172 0,1751	2a · s P 0,3947 0,2248 0,0256 0,4224 0,2245
~ M.E	2-OCH3 4-NMe2 4-NMe2 4-NMe2 4-NMe2 4-NMe2	Phart CN CN Br CI F OCH3	140 130 130 140 130 140 130 140 130 140 130	0,0764 0,1320 0,0666 0,0670 0,0275 0,0158	0,1103 0,1858 0,0966 0,0966 0,0407 0,0235	800 1120 1120 1120 1120 1120 1120 1120 1	0,1294 0,1284 0,0940 0,0875 0,0514	0,1823 0,1823 0,1347 0,1347 0,0752 0,0394	600 510 510 510 510 510 510 510 510 510 5	$0,1570 \\ 0,0318 \\ 0,0812 \\ 0,0592 \\ 0,0430 \\ 0,0321 \\ 0,0321$	0,2184 0,0470 0,0470 0,0862 0,0632 0,0632	$^{120}_{200}$	0,2025 0,0517 0,1406 0,0859 0,0686 0,0686	0,2758 0,0756 0,1970 0,1235 0,0995 0,0773	870 870 1	0,2788 0,1410 0,1763 0,1652 0,1034 0,1034	0,3671 0,1976 0,2430 0,2280 0,1780 0,11780
Col	npare to	the literature	data	and the	accuracy (of mea	suremen	ts in [6];	ь Р .	= 3r/(r - 3r)/(r -	+ 2); c	Me=CH	[3, Ph=	C6H5; 6	I Pa · s	= 1 kg n	n-1 s-1

0340-4811 / 81 / 1100-1259 \$ 01.00/0. — Please order a reprint rather than making your own copy.

2. Experimental

Fluorescence Anisotropies (FA) were measured by automatic photoelectric recording, using an elastooptical quartz light modulator with frequency modulation of 52.4 kHz and a quartz Arago compensator [12]. Mean fluorescence lifetimes, $\tau_{\rm F}$, were obtained with a modified Bauer fluorimeter [13]. The accuracy of the $\tau_{\rm F}$ measurement was ± 10 ps.

3. Results and Discussion

In Table 1 the obtained values of $\tau_{\rm F}$ and FA are given. The viscosities of the nonpolar solvents n-heptane and toluene differ only slightly from those of the polar solvents DMF and acetonitrile, in contrast to the relatively large viscosity of n-propanol. The effect of the viscosity upon the FA is obvious (e.g. 1a, 1d, 1e with $\tau_{\rm F}$ equal in different solvents). The magnitude of the FA, however, is strongly related to the mean molecular fluorescence lifetime $\tau_{\rm F}$. In the case of very short $\tau_{\rm F}$ (e.g. 1a, 1b, 1d, 1f, 1h), high FA can be observed despite low solvent viscosities. For molecules 1c, however, $\tau_{\rm F}$ is very long, and hence the FA becomes very low. The FA of molecules with equal $\tau_{\rm F}$ in different

- H. Görner and D. Schulte-Frohlinde, J. Phys. Chem. 82, 2653 (1978); Ber. Bunsenges. physik. Chem. 81, 712 (1977).
- [2] D. J. S. Birch and J. B. Birks, Chem. Phys. Letters 38, 432 (1976).
- [3] J. B. Birks, Chem. Phys. Letters 38, 437 (1976).
- [4] M. Alicka, R. K. Bauer, and A. Kawski, Z. Naturforsch. 35a, 896 (1980).
- [5] I. Gryczyński, D. Glovna, and A. Kawski, Z. Naturforsch. 35a, 777 (1980).
- [6] D. Gloyna, A. Kawski, and I. Gryczyński, Z. Naturforsch. 35a, 1192, 1411 (1980).
- [7] D. Gloyna, I. Gryczyński, and A. Kawski, Z. Naturforsch. 36a, 626 (1981).

solvents having equal viscosities and different dielectric constants (e.g. 1a, 1d and 1e, in n-heptane and acetonitrile) reveals a distinct effect of ε upon the FA, the FA increases with growing ε , contrary to the phenomenon observed previously [14]. It is difficult to determine unequivocally the effect of ε upon the FA for the remaining 1 substances, as the influence of such quantities as $\tau_{\rm F}$ and η is substantial.

As shown in Table 1, in the polar solvents DMF and acetonitrile, $\tau_{\rm F}$ is not monotonic function of the acceptor activity of the R' substituent, in contrast to the nonpolar solvent case (n-heptane and toluene [6]). In both polar solvents, $\tau_{\rm F}$ attains a minimum value for the substituted halogenoderivatives 1h and 1i in the series 1g, 1b, 1h–1k, which has already been observed qualitatively for the series of substances mentioned above, both in non-polar and polar solvents, by measuring the FA, i.e. by an independent method (compare the values of $\tau_{\rm F}$ and r in Table 1).

Compound 1b is an exception, it having a too large ratio r/τ_F . This can be accounted for, comparing the remaining substances of the series 1g, 1b, 1h-1k, by the fact that 1b exhibits a slower rotational motion in these solvents. Molecule 1b with its large tetrahedral diphenylphosphinyl group serving as an acceptor, differs most strongly from the other substances of this series, due to its geometry.

We thank Professor A. Schmillen (University of Giessen) for his valuable remarks.

- [8] A. Kawski, I. Gryczyński, Ch. Jung, and K.-H. Heckner, Z. Naturforsch. 32a, 420 (1977).
- [9] W. Liptay, Dipole Moments and Polarizabilities of Molecules in Excited Electronic States, in Excited States Vol. 1, Acad. Press, London 1974, p. 129-229.
- [10] W. Liptay, H. J. Schumann, and F. Petzke, Chem. Phys. Letters 39, 427 (1976).
- [11] A. Kawski and M. Alicka, Z. Naturforsch. 34a, 1371 (1969); 35a, 775 (1980).
- [12] A. Kawski, Z. Kojro, and M. Alicka, Z. Naturforsch. 35a, 1197 (1980).
 [13] R. K. Bauer and K. J. Rudik, Acta Phys. Polon. 35,
- [13] R. K. Bauer and K. J. Rudik, Acta Phys. Polon. 35, 259 (1969).
- [14] A. Kawski, J. Kukielski, and J. Kamiński, Z. Naturforsch. 33a, 1228 (1978).

Nachdruck — auch auszugsweise — nur mit schriftlicher Genehmigung des Verlages gestattet Verantwortlich für den Inhalt: A. KLEMM

Satz und Druck : Konrad Triltsch, Würzburg