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By appropriate selection of two or three wavelengths,
intensity differences can be used for obtaining directly the
electron density distribution (i.e. the arrangement of atoms)
for parts of a crystal structure. Application to macro-
molecules and amorphous binary substances appear fea-
sible.

X.rays taken from a synchrotron source can be
tuned over a wide range in A. For using anomalous
scattering effects [1] close to K or L absorption
edges Ac, special conditions for intensity collection
can be met. The method briefly described below uses
symmetry conditions imposed on the real (a) and
imaginary part (b) of the x-ray atomic scattering
factor defined by

a=(fo+f)T and b=f'T

with 7' = Debye-Waller ‘‘temperature factor”.

A first possibility consists in selecting two wave-
lengths 1; < A3 on both sides of A, of one species of
atoms (called “edge atoms”) in a crystal structure
such that

be1 == be2 (1a)

Qe) = Qe2,
holds with

e denoting the edge atoms (of which % are as-
sumed to be in the unit cell),

1, 2 denoting 4; and As.

If Az — 41 is small enough, the corresponding a and
b for the ‘“‘normal scatterers” (m — k in the unit cell
and denoted by the subscript n) follow

@n1 =~ @nz, b1 = bpz < bei.

(1b)
From the well-known general expression for | F (k) |2

|F@)|?‘ = z zlfa,uﬂr + buby) cos h(ry — ry)

v=1 p=
~+ (apby — byay)sin b (ry — ry)
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it follows via straight-forward arguments that the
scaled intensity differences

| FuB)[®— [ Fa(k)|?
- be1 — be2 ’

Ayz (k)

permit computing a Fourier transform %
Lo (¥) = F[A12()] = Li2e(¥) + i L12s(z) . (3)

The real part Ljsc(u) of (3) yields the vectors be-
tween the anomalous scatterers only [2]t. The
imaginary part Ljss(u) contains k(m — k) vectors
from each e-atom to all n-atoms. They represent
k parallel “images” of the n-atom structure as
“seen” from each e-atom [3]. These images are,
however, disturbed by equivalent inverse and
negative images caused by the anti-centrosym-
metry of Ljss(u). This will partly or (for centro-
symmetric structures) completely erase these
images.

In this case one can make use of a second sym-
metry condition by selecting a third wavelength
A3 such that the role of be and a. in (1a) is inter-
changed:

@e3 + Ge2,
an3 = adn2,

beg == bes,
an = bnz - (4)
In full analogy to (2) and (3), the Fourier trans-
form

Las(u) = Lage(%) + t Lass (%) (5)
is computed. Addition of parts of (2) and (3) ac-
cording to

Loge (u) + Lios(%) — Lize ()

k m
=2 Z z Onr (1) * Beu(r) (6)
p=1r=k+1

compensates the anti-centrosymmetry mentioned
above by the centrosymmetry of Lage(u) [4].
The right-hand sidet of Eq. (6) with

on(r) electron density distribution (including ther-
mal vibration) of the n-atoms,

Be(r) sharp, spherical density distribution for each
of the e-atoms (smeared out by its thermal
vibration), and

* denoting convolution,

t These statements are exact if all by =0 and be; & f (sin 6)

and beg = bez = f (sin 6). They are close approximations
under the conditions (1) and (4).
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provides undisturbed images (compared with
Liss(u)). It can be solved to obtain the n-atom
arrangement (step 2) — either by deconvolution
or by other techniques —, if the arrangement of
the e-atoms has been found from Ljgc(%) (step 1).
Step 2 (which can also be applied to Liss(u) alone)
yields the true symmetry of the complete structure,
including enantiomer or polarity. This step com-
prises a partial structure analysis without ‘“know-
ing” phases. If only one e-atoms exists, step 1
is unnecessary and step 2 trivial, with results

similar to [5]. In this case > gn(r) follows directly
y=E+1
from the diffraction intensity differences A2 (k)

and As3(h) (or Aj2(h) alone) without knowledge
of phasest. A computer program has been imple-
mented which performs step 2 (from Eq. (6) or from
L2 ().
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Applications of this method (called “lambda
technique” in our laboratory) may be envisaged
for determination of crystal structures which can-
not be solved by present routine methods, e.g. also
pseudosymmetric and/or super-structures. Because
the n-atoms need not be treated as individuals, a
density map of unresolved (and perhaps not resolv-
able) n-atoms can be obtained. This may be helpful
in the investigation of positionally disordered ma-
cromolecules (provided that collecting a double or
triple data set appears possible). In amorphous
binary substances, partial pair distribution funec-
tions [6] of the two constituents e and n can be
separated in (e, e)- and (e, n)-distributions.
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