Connection Aspects of the Non-linear Schrödinger Equation

A. Grauel

Arbeitsgruppe Theoretische Physik, Universität Paderborn, Federal Republic of Germany

Z. Naturforsch. 36a, 1118-1119 (1981); received August 24, 1981

Some geometrical features of the non-linear Schrödinger equation are studied and it is described how the Schrödinger equation can be obtained from the non-linear scattering equations. The $\mathrm{SL}(2,\mathbb{R})$ -valued elements of the matrix of the non-linear scattering problem are interpreted as matrix-valued forms. We calculate the curvature form with respect to a basis of the Lie algebra. If the curvature form equals zero then we obtain the non-linear Schrödinger equation.

Wahlquist and Estabrook have given a geometric approach [1] and they find a prolongation structure for non-linear partial differential equations in two independent variables. They have applied their method to the non-l near Schrödinger equation and they discussed the relationship between the pseudopotentials and the inverse scattering method (ISM) of Zakharov and Shabat [2], and Ablowitz, Kaup, Newell and Segur [3]. Sasaki [4] has shown that the ISM is given by a completely integrable pfaffian system and that the equations of Ablowitz, Kaup, Newell and Segur can be described by a pseudospherical surface. Furthermore, Sasaki [5] has given pseudopotentials for equations of Ablowitz, Kaup, Newell und Segur.

We give a further example of the Lie algebraic method to study the geometrical aspects of the non-linear Schrödinger equation. First we cite the scattering equations (ISM) and some formulae [6]. We use the (ISM) in the form

$$\frac{\partial}{\partial x} \begin{pmatrix} \varphi^1 \\ \varphi^2 \end{pmatrix} = \begin{pmatrix} \eta & q(x,t) \\ r(x,t) & -\eta \end{pmatrix} \begin{pmatrix} \varphi^1 \\ \varphi^2 \end{pmatrix}, \tag{1}$$

where the time evolution of the functions $\varphi^1(x, t)$ and $\varphi^2(x, t)$ are given by

$$\frac{\partial}{\partial t} \begin{pmatrix} \varphi^{1} \\ \varphi^{2} \end{pmatrix} = \begin{pmatrix} A(x, t; \eta) & B(x, t; \eta) \\ C(s, t; \eta) & -A(x, t; \eta) \end{pmatrix} \begin{pmatrix} \varphi^{1} \\ \varphi^{2} \end{pmatrix}. (2)$$

The coefficients A, B and C are functions of x and time t. The quantity η is the eigenvalue of the

Reprint requests to Dr. A. Grauel, Arbeitsgruppe Theoretische Physik, Universität Paderborn, Warburger Str. 100, 4790 Paderborn, Fed. Rep. of Germany.

scattering problem and we assume $\eta \neq \eta(t)$. The system (1) and (2) can be rewritten in matrix notation. We have

$$\frac{\partial \varphi^{k}}{\partial x^{j}} + \sum_{p=1}^{2} \Omega_{pj}^{k} \cdot \varphi^{p} = 0, \qquad (3)$$

where j, k=1, 2 and $x^1=x, x^2=t$. The $\varphi^k(x,t)$ are the components of a two-component field on the principal bundle P(M,G). The Ω^k_{pj} are given by the components of the matrix in (1) and (2). The theory of Cartan-Ehresmann connections (see [7]) generalizes the Gaussian curvature of a Riemannian 2-dimensional manifold. The curvature form is given by the exterior covariant derivative of the 1-form ω on P(M,G) with the values in a finite-dimensional vector space V in the form

$$\Theta = \nabla \omega = \mathrm{d}\omega \circ h\,,\tag{4}$$

where Θ is a ${m g}$ -valued 2-form. The (p+1)-form $\nabla \omega$ is given by

$$\nabla \omega(X_1, \dots, X_{p+1})$$

$$= d\omega(hX_1, \dots, hX_{p+1}), \qquad (5)$$

and $h: T_p(P(M,G)) \to S_p$ the projection of T_p (tangential space) onto its horizontal subspace S_p . The space of vertical vectors $V_p = T_p \Theta S_p$ lies tangential to the fibre.

In a previous paper [6] we have expressed the curvature form Θ on bundles P(M, G) in the form

$$\Theta = \sum_{i=1}^{3} d\omega^{i} \otimes X_{i}
+ \frac{1}{2} \sum_{i,j=1}^{3} (\omega^{i} \wedge \omega^{j}) \otimes [X_{i}, X_{j}],$$
(6)

where $\omega^k(k=1,2,3)$ are arbitrary one-forms and $[X_p,X_q]$ is the commutator of the quantities X_k . The two-form Θ is called the curvature of the connection. The $\{X_k\}_{k=1}^3$ are a basis of the Lie algebra $g = \mathrm{SL}(2,\mathbb{R})$, and we choose

$$X_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$X_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$
 (7)

In view of (3) we can write for the 1-forms

$$\omega^{1} = - (\eta \, dx + A \, dt),$$
 $\omega^{2} = - (q \, dx + B \, dt),$
 $\omega^{3} = - (r \, dx + C \, dt).$ (8)

Notizen 1119

If we rewrite the curvature form (6) with (7) and (8) then we obtain the expression

$$\Theta = (qC - rB - A_x) \cdot dx \wedge dt \otimes X_1 + (2 \eta B - 2 qA + q_t - B_x) \cdot dx \wedge dt \otimes X_2 + (-2 \eta C + 2 rA + r_t - C_x) \cdot dx \wedge dt \otimes X_3.$$
(9)

If we choose

$$r = -q^* = -u^*, \quad A = 2i\eta^2 + i|u|^2, B = iu_x + 2i\eta u, \quad C = iu_x^* - 2i\eta u^*,$$
 (10)

then we obtain

$$\Theta = (-2ui|u|^2 + u_t - iu_{xx}) dx \wedge dt \otimes X_2 + (-2u*i|u|^2 - u_t^* - iu_{xx}^*) \cdot dx \wedge dt \otimes X_3.$$
(11)

If $\Theta = 0$ we obtain

$$i u_t + u_{xx} + 2 |u|^2 u = 0,$$

- $i u_t^* + u_{xx}^* + 2 |u|^2 u^* = 0,$ (12)

- [1] H. D. Wahlquist and F. B. Estabrook, J. Math. Phys. 16, 1 (1975) and 17, 1293 (1976).
- [2] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
- [3] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973).
- [4] R. Sasaki, Phys. Lett. 71A, 390 (1979).
 [5] R. Sasaki, Phys. Lett. 73A, 77 (1979).
- [6] A. Grauel, Z. Naturforsch. 36a, 417 (1981).

for the real and imaginary part of the non-linear Schrödinger equation. Moreover, from the condition $\Theta=0$ we conclude that

i) ω satisfies the Maurer-Cartan structural equation

$$d\omega + \frac{1}{2}[\omega, \omega] = 0$$
,

ii) the connection in P(M, G) is flat.

To summarize: We have used the Lie algebraic method to give a geometrical interpretation of the non-linear Schrödinger equation. We see that ω satisfies the structure equation of Maurer-Cartan, which implies that the canonical flat connection has zero curvature. Therefore we can say that the non-linear Schrödinger equation can be deduced from the fact that the $SL(2,\mathbb{R})$ connection associated with the scattering equation has zero curvature. The Bäcklund transformation for the non-linear Schrödinger equation is given by Lamb [8] in a different way by using the method of pseudo-potentials [1].

- [7] C. von Westenholz, Differential Forms in Mathematical Physics, North-Holland, Amsterdam 1978.
- [8] T. P. Branson, Journal of Differential Geometry (1981).
- [9] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, London 1963.
- [10] G. L. Lamb, Phys. Lett. 48A, 73 (1974).