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Atom-localized molecular orbitals are defined and dis­
cussed for alternant hydrocarbons, in the HMO approxi­
mation.

I t  has been observed that the pi orbitals of 
benzene [1] and some other molecules [2] can be 
localized on atoms. These atom-localized molecular 
orbitals (ALMO's) can be defined in a more general 
way. We propose to define them as the molecular 
orbitals (MO's) which maximize the contribution to 
the electronic charge density of atoms (or sets of 
atoms) which are assigned to the MO's: 

i
2  2  c»u — maximum,
i m

where cmj is the coefficient of the atomic orbital 
(AO) m in the MO i, and

i above 2  symbolizes the limitation to the AO's 
assigned to the MO i.

Such ALMO's can be obtained directly, such as 
in [3, 4], or by unitary transformations among 
MO's of other types. In this case the transformation 
relationships can be obtained by particularizing 
those of the more general localization definition 
[5, 6]:

i
2  2  Cmi cniMmn — extreme,
i m,n

where M is a matrix that defines localization.
In the pi approximation, when localized on the 

starred atoms of alternant hydrocarbons [7], the 
AO coefficients of the ALMO's are given b y :
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l/j/2 if m =  mi (MO i is 
localized on mt), 

Cmi — q if m 4= nii, starred,
P mmJ^2 if m is unstarred

(P  is the bond order and charge density matrix).
An alternation of the sign of cmi (ra-unstarred) can 

be observed. In the HMO [8] approximation only 
atoms adjacent to mi contribute to the bonding 
energy (the other coefficients on unstarred atoms 
ensure orthogonality). I t  follows that the ALMO 
energy can be defined as:

Ei =  ci.Jr  F mt) ,

where F m{ is the free valence number [9], giving 
the total energy:

E = J 4Ei . 
i

Virtual ALMO's can be defined from virtual MO's. 
They differ from the occupied ALMO's only by the 
sign of the AO coefficients on the unstarred atoms. 
Their energy is :

2?t., =  a - / S  ( 1 /3 - 1 ^ ) .

The ALMO's could provide an useful tool in 
processes where only some centers are involved. 
The mathematical foundation for such a treatment 
is given by the perturbation theory. The great 
number of zero coefficients in ALMO's simplifies 
considerably the perturbation formulas. By using 
a technique, that is adapted to a localized MO 
treatment [4, 10—14], the well-known formulas 
can be found (up to second order):

E(0) =  2 ^ E i} 
i

EW =  2 2 < i\v \i> ,  
i

E (V = 2  2< i\v \j*> H E i - E j.) - i , 
i,j*

v being the one-electron perturbation operator. 
Simple formulas can be obtained, e.g. in the case 
when the perturbation is :
a) monocentric Sar | J") (r | ,
b) bicentric 8ßrs (| r> <« | +  | «> <r |).
The first-order, viz. second order corrections to the 
energy are:
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a) El» =  8ar ,
EW =  (8ar)2/[4/5(|/3 —F r)];

b) e.g. when both r and s belong to the same mole­
cule and are both starred
El» =  0,
El2) =  (Zßrs)21 [ß (2 J/3 -  F r - F s)].

The convergence of the perturbation series can be 
judged by the example of the pyridine molecule; 
with 8ar =  0.5 ß, the following results are obtained, 
by using the ALMO's of benzene:
— variational energy (see e.g. [15, 16]): 

6 a +8.55/5;
— perturbational contributions:

E(°) =  6a +  8.00 ß , El» =  6a +  0.50ß, 
E(2) =  6a +  0.05ß .

Similar results are obtained by perturbing cyclode- 
capentaene to azulene (8ß15 =  i.ß):
— variational (see e.g. [15, 16]): 10a+  13.36/?;
— perturbational:

El® =  10 a +  12.94/?, El» =  0, 
El 2) == 10 a +  0.39/5,
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resulting a value E =  10a +  13.33/3. We notice that 
for benzene and cyclodecapentaene free valence can 
be calculated from the formula for cvclic polyenes 
[15]:

F r =  j/3 — (4/») cosec (jr/w),
n being the number of C-atoms in the polyene.

The values obtained here are also close to those 
obtained by the usual perturbation theory for­
mulas (see e.g. [15, 16]): E l» 's are identical with 
those issued from our perturbation treatment, El2> 
is 0.05 ß for pyridine and 0.44 ß for azulene. Third 
order terms can be included in our treatment, as 
they are very simple. By using variational per­
turbation formulas [13] the energy value can be 
further improved (e.g. for azulene i£ =  10a +  
13.35/5).

ALMO's are suitable for qualitative discussions, 
in which case graphical methods can be helpful [17].

The perturbation effects increase with the de­
crease of the difference between the virtual and 
occupied ALMO energies. This explains the ob­
served correlation between the free valence and the 
localization energy, as well as the importance of the 
former in chemical reactivity [18].
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